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１． はじめに 

昨今の環境問題の中で大きな議題の１つに，温

室効果ガスによる地球温暖化があり，その原因の

１つと考えられている CO2 の排出を抑制する取り

組みが世界的に行われている．また，現在主流の化

石燃料はいずれ枯渇すると考えられており，それ

らから脱却する必要がある． 

そこで本研究では太陽光励起レーザに注目した．

これは無尽蔵なエネルギである太陽光をエネルギ

源としてレーザを発振する技術である． 

 

２．太陽光励起レーザ 

本研究で使用する太陽光励起レーザの構造の概

念図を図 1 に示す．太陽光励起レーザは 1 次集光

系であるフレネルレンズで集光した太陽光を，2 次

集光系である太陽光キャビティでさらに集光し，

キャビティ内部にあるレーザ媒質に吸収させるこ

とでレーザを発振する．また，太陽光キャビティの

内部にはレーザ媒質を冷却するために常温の水を

流す．これは，実用化の際の冷却材には、低コスト

で安易に入手できる海や川などの水を用いる想定

をしているためである． 

 

３．レーザ媒質と熱効果 

レーザ媒質が吸収したエネルギは、レーザにな

るものと熱として蓄積するものがある。例えば CW 

クリプトンアークランプによって励起された

Nd:YAG レーザの場合，吸収した励起光パワーのう

ち，25%はレーザになり， 62.5%は熱として蓄積さ

れた(1)．この熱により，光弾性変化による誘導放出

断面積の低下や再吸収損失の増加等の問題が生じ，

レーザ出力に悪影響を与える．  

 実際にレーザ媒質の熱応力を 19%低減させるこ

とで，レーザの最高出力が 78.9 W から 83.9 W に

増加し，更にこれらの値と定常出力の差が 51.8 W

から 2.4 W まで改善したことが報告されている(2)． 

現在のレーザ媒質は円柱状のものを使用してい

るが，この形状を工夫することでレーザ媒質の冷

却効率を向上させることができると考えた．そこ

で，レーザ媒質の表面積を増やすことでより冷却

効率が向上すると考え，レーザ媒質の断面形状を

変更する．本研究では，その形状を検討するため

に，レーザ媒質と冷却水間の熱伝達計算を行う． 

 

４．OpenFOAM による熱伝導シミュレーション 

100 W の発熱量を持つ Nd:YAG 結晶と，その周囲

を流れる 300 K の水の解析領域を用意し，OpenFOAM 

のchtMultiRegionFoamを用いて時間に対する温度

変化の数値計算を行う． 

 

図 1 太陽光励起レーザの概念図 



生成したメッシュを図 2 に示す．図 2 の立方体

が液体領域で，１辺の長さは 200mm である。冷却

材は X 軸に沿って流れる．その中心に半径 10mm，

長さ 100mm の円柱状の固体領域がある．メッシュ

の分割数の上限は 1000000 である．また，領域ご

との物性値は表 1に示す通りに設定した． 

 

５．計算結果と今後の予定 

 現時点で用意した設定を用いて，熱伝達計算を

実行できた．図 3 は図 2 の白線，X=100 の地点で

Y-Z 平面の断面図を取り，その温度分布を表示した

図と，Z=0 における Y 軸上の温度分布グラフであ

る．Y=90 から 110 がレーザ媒質，その外側が冷却

水の温度である．固体と液体間で熱伝達が確認で

き，レーザ媒質内の温度分布は，理論通りほぼ二次

関数で表される分布となった．しかし，系全体では

レーザ媒質の中心に対して軸対称の温度分布とな

るはずであるが，一部に偏りが確認された．この原

因として，境界条件の設定に不具合があると予想

している． 

 また，レーザ媒質の形状を検討する上で，その評

価方法を確立する必要がある．形状を変更すれば，

冷却効率は上がっても，応力集中により従来のも

のより破損しやすくなる場合も考えられる． 

 これらを踏まえ，今後は冷却水の流速や固体領

域の直径などを変更した計算を行い，結果から適

切な設定を考えると共に，形状の評価方法の検討

を行い，具体的な数値計算に取り組んでいく． 
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図 2 流れ場と固体領域(レーザ媒質) 

 

表 1 流れ場と固体領域(レーザ媒質) 

流体領域

H2O

固体領域

Nd:YAG結晶

分子量 18 12

融解熱 0 2000

比熱 4186 590

密度 4560

熱伝導率 10.5

粘性係数 0.00102

プラントル数 0.7  

 

 

図 3 温度分布の計算結果  

(上): X=100,Z=100 における Y 軸上の温度分布 

(下): X=100mm 地点での Y-Z 断面 


