
1. まえがき 

1911 年に液体ヘリウムを用いて水銀の電気抵抗を測

定する過程において、4.2 K 以下において電気抵抗が測

定不能なほどに小さくなることを発見した。一定条件

下で超伝導現象を示す物質を超伝導体と言う。1986 年

に銅酸化物高 Tc 超伝導体が登場し、絶対零度付近まで

冷却しなくても超伝導現象を発現できるようになった。

液体窒素の原料である窒素は無制限に使用できるため、

今後は液体窒素を使用した高Tc超伝導体の応用がます

ます活発になることが予想される。一方、近年、超伝導

量子コンピュータが注目されているが、実用的な量子

ゲート方式の超伝導量子コンピュータの実現には解決

すべき課題が多い。本研究では、時間依存の GL 方程式

を用いて Bi 系高 Tc 超伝導円筒導波管の共振器特性を

解析し、超伝導量子コンピュータのコヒーレンス時間

の改善方法を検討した。 

2. 時間依存の GL 方程式 

Bi 系高 Tc 超伝導円筒導波管の共振器特性解析には、

式(1)で与えられる時間依存の GL（TDGL）方程式を使

用した。 
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ここで、𝜉はコヒーレンス長、𝑒は電子電荷の絶対値、ℎ は

プランク定数、𝜏はオーダーパラメータの緩和時間、𝐴は

ベクトルポテンシャル、𝑉は超伝導体でのスカラポテン

シャル、∆0は絶対零度におけるエネルギーギャップで

ある。 

3. TDGL 方程式を用いた高 Tc 超伝導円筒導波管の共

振器特性解析 

 高 Tc超伝導円筒導波管共振器の解析モデルの模式図

を図１に示す。円筒導波管の内半径を𝑎 =5[mm]、外半径

を b=10[mm]とし、共振器長 l は可変とした。また、TDGL

方程式を用いて超伝導体のコンダクタンスを計算し、

超伝導状態における表皮厚 δsを算出した。 

 

 

 

 

 

 

 

   図 1. 高 Tc 超伝導円筒導波管の模式図 

 円筒導波管の伝搬モードは基本モードの𝑇𝐸11モード

と仮定し解析を行った。𝑇𝐸11モードの電磁界を以下に

示す。 
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時間依存の GL 方程式を利用した Bi 系超伝導円筒導波管の Q 値解析 
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ここで、𝐽1は 1 次のベッセル関数、𝑘𝑐は臨界波数、𝛾

は伝搬定数である。 

円筒導波管断面の電気力線と磁力線の様子を図 2 に

示す。また、伝搬減衰定数の解析式を式(5)に示す。 

 

図 2. 円筒導波管断面の電気力線と磁力線の様子 

(実線:電気力線、破線:磁力線) 

伝搬電磁波の周波数と高 Tc 超伝導体の導電率の関係

は TDGL 方程式を用いて解析した。超伝導体の導電率

は、伝搬する電磁波によって準粒子が励起されるため

に有限になる。本研究では TDGL 方程式の解を用いて

導電率を計算し伝搬減衰定数を求め、超伝導円筒導波

管共振器の無負荷時の Q 値 Q0の値を解析した。解析結

果の例を図 3、図 4 に示す。 

4.  コヒーレンス時間と無負荷時のＱ値の関係 

 量子ゲート方式の超伝導量子コンピュータの実

現を目指す上での課題として、10[mK]という極低

温が必要であることと量子ビットの安定状態であ

るコヒーレンス時間が短すぎることが挙げられる。 

 極低温の利用は熱雑音を減らすことから避けら

れない。一方、コヒーレンス時間を増加させるこ 

とは技術的に可能である。ジョセフソン・トンネ

ル接合を用いた量子ビットの誕生時には ns レベ

ルであったコヒーレンス時間は、最近では μs レ

ベルまで改善されているが、大規模集積回路の実

現には ms 以上のコヒーレンス時間が必要であり、

その手段として超伝導共振器の高い Q 値の利用が

有力視されている。図 5は Q値とコヒーレンス時 

 

図 3. 共振器長 3[cm]のときの Q０値の解析結果(T=50[K]) 

 

図 4. 共振器長 5[cm]のときの Q０値の解析結果(T=50[K]) 

 

 

図 5. 共振器長 5[cm]のときの Q０値とコヒーレンス時間と 

の関係の解析結果(T=50[K]) 

 

間の関係を解析した結果である。動作周波数は 100

～3000[GHz]とした。 

5. まとめ 

 TDGL 方程式を用いて Bi系高 Tc超伝導円筒共振

器の無負荷時の Q 値を解析し、量子ビットのコヒ

ーレンス時間との関係を解析した。 
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