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1． 緒言 

 樹脂材料は，比較的加工が容易であり,形状設定

の自由度が高く,軽量であるが,その反面強度が金属

材料に比較して相対的に低いため,単一材料として

の使用範囲が限られる傾向にある.そのため,高機能

を有しかつ機械的特性の優れた金属材料と樹脂とを

接合させ,両材料の長所を活用するような異種材料

接合体の開発が進められている(１) (2),(3). 

 冷却過程において樹脂と金属との接合体応力は樹

脂の硬化過程の変形および力学的特性の変化に関係

する可能性が高いことから,樹脂/金属接合材料およ

び構造では,材料や形状が不連続のため接着界面端

部において応力集中が生じ,接合部のはく離やき裂

を招くことが予想される(2),(3).このため樹脂/金属

接合構造の強度の評価では接合体内部応力の分布な

らびに特徴を十分把握しておく必要がある.しかし

ながら,接着界面端での応力集中は,微小な領域とさ

れることから,樹脂/金属接合構造における応力状態

を実際に測定することが困難であると予想される.

本研究では異材接合構造として平面ひずみ状態を想

定した PPS樹脂とアルミニウム接合体モデルを対象

とし樹脂の硬化過程に生ずる応力を有限要素法によ

る熱応力解析により求め，構成材料の体積収縮と応

力分布の変化の様子を明確にすることを試みる． 

 

2． 数値解析方法（有限要素解析） 

 有限要素法解析を用いて樹脂/金属接合体のモデ

ルから内部応力の把握を目的として，熱弾塑性解析

を行う． 

 

2.1 有限要素解析モデル 

 本解析に用いる異種材料接合体モデルを Fig.1に

示す．本モデルは平面ひずみ状態とし，樹脂は PPS

樹脂，金属にはアルミニウムを用いた異材接合体を

想定している．中心線を対称軸とした 1/2モデルと

し，界面から充分離れた領域の接合体形状の影響は

無視するものとする．アルミニウムおよび PPS 樹脂

側の自由表面と界面とのなす角度をそれぞれ

1=90°,2=90°としたモデルの界面長さ W を基準

として，異材接合体を構成する樹脂と金属側の自由

表面長さを W=WP=WMとなるように設定した． 

 

2.2 解析条件 

均質等方性材料でかつ無応力・無ひずみ状態の種

材料接合体が樹脂の硬化過程において接合界面で完

全に結合されたモデルと想定し，高温から一様に室

温まで温度変化したと仮定している．異材接合体界

面端は弾性理論上からは応力の特異場(2)となるため，

解析精度を確保するためには，界面端の要素分割を

細かく設定し，要素数を増大させる必要がある．こ

のため，半径方向に分割する隣り合う要素寸法値を

1:0.7 に設定し，20 分割した．その結果，最小寸法

を r/W=3.422×10-4になった．周方向の要素は 9°毎

に分割した． 

 今回の熱弾塑性解析ではアルミニウムと PPS 樹脂

両材料を弾塑性材料と仮定し，Table.1 のような材

料定数を扱った.(4)(5) 

 

3． 解析結果と考察 

樹脂金属接合体の応力分布σx の代表例を Fig.2

および Fig.3に示す.Fig.2は解析モデルにおける応

力σx 分布を示し，アルミニウムの自由表面側には

全体的に引張り，樹脂側の自由表面側には広範囲に

圧縮の残留応力が発生している．界面端で応力集中

が生じていることから，Fig.3 に樹脂と金属の界面

端自由表面上の節点から出力される熱応力σx の分

布を示した．界面端部近傍における PPS 樹脂とアル

ミニウムの熱応力はどちらも引張り応力となり,界

面に近づくにつれ応力は上昇する傾向がある. 

この結果解析結果から，樹脂/アルミニウム接合

材料を引張り試験にて強度の評価を行う場合，金属



側からの破壊することは考え難く，破壊は樹脂また

は樹脂と界面からの剥離が進展するものと考えられ

る． 

 

4． 結言 

熱弾塑性解析から樹脂/金属接合体モデルでは接

合処理時の温度変化から界面に残留応力が発生し,

樹脂と金属で応力差が発生する.界面での両材の変

形量を把握し，応力分布との対応関係を明確にした．

界面端における両材料の自由表面上の熱応力分布は

不連続となり，この場合の破壊様式の予測について

考察を行った. 
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Table.1 熱弾塑性解析での材料定数 

Fig.1 熱弾塑性解析モデル 

ニウ

ム材料定数 

Fig.2 応力の分布 

(PPS樹脂 90°,アルミニウム 90°) 

Fig.3 熱弾塑性解析結果 

(PPS樹脂 90°,アルミニウム 90°) 
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