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１． はじめに 

昨 今 様 々 な 場 面 で 取 り 上 げ ら れ る SDGs 

(Sustainable Development Goals)のひとつのゴー

ルである「7.エネルギーをみんなに そしてクリ

ーンに」には，「2030 年までに，世界のエネルギー

ミックスにおける再生可能エネルギーの割合を大

幅に増大させる」といったターゲットがある．そこ

で，本研究では再生可能エネルギーの中でも，地球

に無尽蔵に降り注ぐ，身近なエネルギーである太

陽光に着目した． 

太陽光はインコヒーレントなため，直接，光エネ

ルギーとして利用することが困難であり，太陽光

を他の光エネルギーに変換する技術は発展途上で

ある．一方，コヒーレントで指向性が高く，直接の

利用が容易な光エネルギーとしてレーザーが挙げ

られる．そこで本研究では，光エネルギーである太

陽光を直接レーザーに変換することで，高効率な

エネルギー変換が期待できる太陽光励起レーザー

に着目した． 

太陽光励起レーザーは 1965 年に C.G. Young に

よって実現された(1)．現在は太陽光励起レーザー

により宇宙空間でレーザー発振をし，発振したレ

ーザーを地球上に照射しエネルギーとして利用す

ることを目指す，宇宙太陽光発電への応用が提案 

 

図 1 本研究で用いる太陽光励起レーザーの概要 

 

されている(2)．宇宙空間では天候に左右されない

ため，安定的な太陽光励起レーザーによるレーザ

ー発振が期待でき，発振したレーザーはその指向

性の特徴から，光ファイバー等を介さず，直接地球

上に照射できると期待されている．  

本研究で用いる太陽光励起レーザーは，太陽光

を集光し，集光した太陽光を固体のレーザー媒質

に吸収させることで，レーザー発振を実現する．そ

のため，いかに効率よく太陽光を集光するかが重

要となる．本研究で用いる太陽光励起レーザーは，

図 1 に示すように一次集光系であるフレネルレン

ズで集光した太陽光を，二次集光系である励起キ

ャビティに進入させ，内部の多重反射により，励起

キャビティの中心に置かれたレーザー媒質に太陽

光を吸収させる．そこで本研究では二次集光系で

ある励起キャビティの形状に着目し，数値計算に

より適した形状を検討する． 



 

図 2 励起キャビティの形状 

 

図 3 花瓶型キャビティの膨らみの位置と直径の

値とレーザー媒質への吸収パワーの関係 

 

２．昨年の報告と本研究の目的 

昨年の報告(3)では励起キャビティの形状につい

て，数値計算により，図 2-a)に示すような長さが

50 mm のコーン型の励起キャビティでは図中左側

に面した太陽光の入射口の直径を 50 mm としたと

きに最もレーザー媒質への吸収が大きくなること

を発表した．さらに図 2-b)に示すようにコーン型

励起キャビティの中央を膨らませた，花瓶型励起

キャビティでも同等のレーザー媒質への吸収が実

現できることを発表した．しかし，花瓶型励起キャ

ビティについて，膨らみの位置や直径については

検討がされていない． 

そこで本研究では，花瓶型励起キャビティの膨

らみの位置と直径について，数値計算により最適

な値を求めることを目的とする． 

 

３．数値計算モデルと計算結果 

 数値計算ではフレネルレンズに多数の光線を入射

させた場合の光線追跡を行い，式(1)によりフレネル

レンズや入射窓等での屈折，式(2)により励起キャビ

ティの内部での反射，式(3)により太陽光のレーザー

媒質への吸収を計算している． 

𝒆𝒓𝒆𝒇𝒍𝒆𝒄𝒕 = 𝒆𝒊 − 2𝒏(𝒏 ∙ 𝒆𝒊)             (1) 

𝒆𝒓𝒆𝒇𝒓𝒂𝒄𝒕 =
𝑛1
𝑛2

(𝒆𝒊 − 𝒏(𝒏 ∙ 𝒆𝒊) 

        √1 − (
𝑛1

𝑛2
)
2

(1 − (𝒏 ∙ 𝒆𝒊)
2)   (2) 

𝑃𝑎𝑏𝑠𝑜𝑟𝑏 = 𝑃𝑖𝑛(1 − exp(𝛼𝐿))                   (3) 

花瓶型励起キャビティの形状について，以前の

報告(3)と同じく長さは 50 mm，入射口直径は 50 mm

とした．さらに膨らみの位置を入射口から 20 から

32.5 mm の位置まで 2.5 mm ずつ，膨らみの直径を

70 から 110 mm まで 5 mm ずつ変化させた計算を行

った．計算結果を図 3 に示す．膨らみの位置を入

射口から 30 mm の位置で，直径を 80 mm とすると

レーザー媒質が吸収するパワーが 191.7 W と最大

となった．これは以前の報告(3)の花瓶型励起キャ

ビティより約 12%大きくなる結果となった． 

 

４．まとめ 

 本研究で用いる太陽光励起レーザーの二次集光

系である励起キャビティについて，花瓶型の形状

では膨らみの位置を太陽光の入射口から 30 mm の

位置で直径を 80 mm とすると最もレーザー媒質へ

の吸収パワーが大きくなることがわかった．これ

は以前の報告と比較し，吸収パワーの大きさが 12%

向上する結果となった． 
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