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1. まえがき 

超伝導現象は、絶対零度付近で金属の電気抵抗がゼ

ロとなる現象である。従来の超伝導現象の発現方法は、

液体ヘリウムを使い、超伝導体を約 4.2[K]まで冷却し

て超伝導状態にする。日本ではヘリウムガスの全量を

アメリカから輸入しているが、近い将来、輸入できなく

なる。一方、近年では高 Tc 超伝導体が登場し、絶対零

度付近まで冷却をせずとも、超伝導現象を発現できる

ようになった。液体窒素の原料である窒素は無制限に

使用できるため、今後は液体窒素を使用した高 Tc 超伝

導体の応用がますます活発になることが予想される。 

 本研究では、時間依存の GL 方程式を用いて Bi 系高

Tc 超伝導円筒導波管の共振器特性を解析した。 

2. 時間依存の GL 方程式 

Bi 系高 Tc 超伝導円筒導波管の共振器特性解析には、

式(1)で与えられる時間依存の GL（TDGL）方程式を使

用した。 
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ここで、𝜉はコヒーレンス長、𝑒は電子電荷の絶対値、ℎ は

プランク定数、𝜏はオーダーパラメータの緩和時間、𝐴は

ベクトルポテンシャル、𝑉は超伝導体でのスカラポテン

シャル、∆0は絶対零度におけるエネルギーギャップで

ある。 

3. TDGL 方程式を用いた高 Tc 超伝導円筒導波管の共

振器特性解析 

 高 Tc超伝導円筒導波管共振器の解析モデルの模式図

を図１に示す。円筒導波管の内半径を𝑎 =5[mm]、外半径

を b=10[mm]とし、共振器長 l は可変とした。また、TDGL

方程式を用いて超伝導体のコンダクタンスを計算し、

超伝導状態における表皮厚 δsを算出した。 

 

 

 

 

 

 

 

 図１. 高 Tc 超伝導円筒導波管の模式図 

 

 円筒導波管の伝搬モードは基本モードの𝑇𝐸11モード

と仮定し解析を行った。𝑇𝐸11モードの電磁界を以下に

示す。 
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ここで、𝐽1は 1 次のベッセル関数、𝑘𝑐は臨界波数、𝛾

は伝搬定数である。 

円筒導波管断面の電気力線と磁力線の様子を図 2 に

示す。また、伝搬減衰定数の解析式を式(5)に示す。 
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図 2. 円筒導波管断面の電気力線と磁力線の様子 

(実線:電気力線、破線:磁力線) 

 

伝搬電磁波の周波数と高 Tc 超伝導体の導電率の関係

は TDGL 方程式を用いて解析した。超伝導体の導電率

は、伝搬する電磁波によって準粒子が励起されるため

に有限になる。本研究では式(6)で与えられる TDGL 方

程式の解を用いて導電率を求めた。 

式(5)で求めた伝搬減衰定数を式(8)に代入して、超伝

導円筒導波管共振器の無負荷時の Q 値 Q0の値を解析し

た。解析結果の例を図 3、図 4 に示す。 
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ここで、𝜆0は共振波長、𝜆𝑔は管内波長、𝑝は定在波

数、𝑍𝑤は電波インピーダンス、𝜎𝑐は導電率、κは GL

パラメータである。導波管の長さは 3[cm]とした。 

 

4. まとめと今後の課題 

本研究では、TDGL 方程式を用いて高 Tc 超伝導円筒導

波管共振器の無負荷時の Q 値の解析を行った。 

無負荷時の Q 値の解析では、共振器長 3[cm]、動作温

度50[K]、周波数f=3[THz]で Q０＝12107、共振器長5[cm]、

動作温度 50[K]、周波数 f=3[THz]で Q０＝33628 となっ

た。貯蔵電磁エネルギーを取り出すための結合孔を設

けたときの Q 値を解析することが今後の課題である。 

 

図 3. 共振器長 3[cm]のときの Q０値の解析結果(T=50[K]) 

 

図 4. 共振器長 5[cm]のときの Q０値の解析結果(T=50[K]) 
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