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１． はじめに 

土壌に生息している細胞性粘菌は、飢餓状態に

なると cyclic AMP(cAMP)と呼ばれる拡散性の物質

を放出し、細胞が集合して子実体と呼ばれる集合

体を形成する。その後、子実体はタンポポの綿毛の

ような形状に変形し、胞子を飛ばすことで再び細

胞が散開するというライフサイクルを繰り返すこ

とが知られており、単細胞生物から多細胞生物に

至るまでの過程を理解する上で注目されている。 

飢餓状態の細胞性粘菌がcAMPを放出して細胞塊

(マウンド)を形成する際に、細胞群は集団的な回

転運動を行う。最近の実験観察によると、拡散性の

物質に強く引きつけられる予定柄細胞と、そうで

はなく、近接する細胞を強く引きつける胞子細胞

の 2 種類が存在していることが報告されている。

特に、マウンド内では予定柄細胞が集団中心に位

置し、胞子細胞が予定柄細胞の集団を取り囲んだ

状態となることが予想されている[1]。 

 本稿では、2 種類の細胞による集団運動を取り扱

う数理モデルを構築し、予想されている細胞性粘

菌の集合過程を数値的に検証する。 

 

２．研究⼿法 
本稿では先行研究[2,3]を参考にして、細胞運動

を表現するための自己駆動粒子モデルと細胞が拡

散する物質の濃度場を表現する反応拡散方程式を

カップリングした反応拡散粒子モデルを考える。    

以下では、 𝑖	番目の粒子の位置を 𝑟! = 𝑟!(𝑡) =

(𝑟!" , 𝑟!
#)とし、細胞極性の方向を𝜃!と表す。また、

Arg(𝑟!)は偏角を表す。本研究では構築した自己駆

動粒子モデルは以下の常微分方程式系である。 

-

𝑑𝑟!
𝑑𝑡 = 𝛼	𝐹!

$%&%' + 𝛽	𝐹!()*+,!%-

𝑑𝜃!
𝑑𝑡 = 𝜉	𝐺!

.%'/+ + 𝜂	𝐺!/*+0%1("!,
 

ここで、𝛼, 𝛽, 𝜉, 𝜂 は正定数である。𝐹!
$%&%'

は細胞極

性𝜃!の方向に運動する駆動力を表し, 𝐹!()*+,!%-は

細胞同士の排除体積効果および接着力を表す。そ

れぞれ、次のように明示的に表される。 

𝐹!
$%&%' = (cos 𝜃! , sin 𝜃!) 

𝐹!"#$%&!'( =#

⎩
⎪⎪
⎨

⎪⎪
⎧ 𝑝)*𝑟!,* − 𝑅+*.

𝑟!,*
*𝑟!,**

	(0 < |𝑟!,*| < 𝑅+)

𝑞)*𝑟!,* − 𝑅+*.
𝑟!,*
*𝑟!,**

	(𝑅+ ≤ |𝑟!,*| < 𝑅,)

−𝑞)*𝑟!,* − 𝑅-*.
𝑟!,*
*𝑟!,**

	(𝑅. ≤ |𝑟!,*| < 𝑅-)
*/!

 

ただし、|𝑟!,3| = 0	ならば 𝐹!()*+,!%- = 0 とし、|𝑟!,3| >

𝑅4 ならば 𝐹!()*+,!%- = 0 とする。細胞間距離が𝑅5
よりも小さければ、𝑅5 になるように反発力がはた

らき、𝑅5 ≤ |𝑟!,3| < 𝑅4 であれば接着するための吸

引力がはたらく。𝑅/ = (𝑅5 + 𝑅4)/2である。 

𝐺!
.%'/+

は細胞にかかる力の方向に極性を獲得す

る効果を表し、𝐺!/*+0%1("!,は濃度勾配の高い方向に

極性を獲得する効果を表す。それぞれ、次のように

明示的に表される。 

𝐺!
.%'/+ = sin	(Arg(𝐹!) − 𝜃!) 



𝐺!/*+0%1("!, = sin	(Arg(∇𝑃(𝑟!)) − 𝜃!) 

ここで、∇𝑃(𝑟!) = F 6
6"
, 6
6#
G
4
𝑃(𝑡, 𝑟!" , 𝑟!

#) である。 

拡散性の物質濃度を𝑃＝𝑃(𝑡, 𝑥, 𝑦) = 𝑃(𝑡, 𝑟)	(𝑟 ∈
ℝ7)とする。濃度𝑃は次の方程式に従うものとする。 

𝜕𝑃
𝜕𝑡 = 𝐷$∆𝑃 + 𝑎P𝑓(𝑟 − 𝑟!) − 𝑏𝑃

8

!9:

 

ここで、𝐷$ > 0は拡散係数であり、𝑎, 𝑏 は正定数で

ある。また供給項に採用する関数 𝑓 を 

𝑓(|𝑟 − 𝑟!|) = S1	(
|𝑟 − 𝑟!| < 𝑅5/2)
0	(𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒)  

として定める。 

数値計算では、自己駆動粒子モデルの数値計算

を 4 段 4 次ルンゲクッタ法にて行い、空間二次元

の反応拡散方程式の数値計算を陽解法にて行った。

また、反応拡散方程式における境界条件として斉

次ノイマン条件を課す。 

 

３．数値計算結果  
図 1 は細胞の 2 種類に分けず、1 種類で検証し

た場合の結果である。濃度場の値が高くなるにつ

れて、青色、緑色、赤色の順で示されている。粒子

数は 100 個とし、各時刻でのスナップショットを

示す。(a)は𝑡 = 1、(b)は𝑡 = 70、(c)は𝑡 = 270、(d)

は𝑡 = 520である。矢印は極性の方向を示している。 

次に、𝑁個の粒子について、𝑁5個の A type と

𝑁 −𝑁5個の B type の 2 つの種類に分ける。すなわ

ち、以下のように定める。 

SA	type,			1 ≤ 𝑖 ≤ 𝑁5
B	type,			𝑁5 < 𝑖 ≤ 𝑁 

図 2は細胞を 2種類に分けた時の検証結果である。

拡散物質に強く引き寄せられる効果を持つ細胞を

白色の粒子とし、そうでない細胞を黒色の粒子と

する。粒子数は 100 個とし、(a)は𝑡 = 10、(b)は𝑡 =

220、(c)は𝑡 = 750、(d)は𝑡 = 1995である。 

 

４．おわりに 
 本稿では、細胞性粘菌の集合過程における 2 種

類の細胞の位置関係の予想を明らかにした。集合

過程を検証した数理モデルにおいて、2 種類の細胞

の位置関係は明確となり、拡散物質に向かう力が

強い細胞が細胞群の中心に位置し、それらを囲う

形で拡散物質に向かう力が弱い細胞が位置する結

果となった。 
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図 1：反応拡散粒子モデル(1 種類) 

(a) (b) 

(c) (d) 
図 2：反応拡散粒子モデル(2 種類) 


