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１．緒言 

音場浮遊法は任意の空間に音響定在波を形成す

ることにより，定在波の節付近に液滴を浮遊させ

ることが可能な非接触技術の 1 つである[1,2]．この

手法は，容器壁面に起因する不均一核生成および

汚染の回避が可能なため，材料創成や創薬などで

の無容器プロセッシング技術としての応用が期待

されている[2]．しかしながら，この手法は超音波に

より試料を浮遊させることに起因し，浮遊液滴周

りに流動が生じ，この流動が液滴の物質輸送に影

響を与えていることが示されている [3]．高精度な

非接触制御技の確立に向けて，音場浮遊液滴の蒸

発および析出挙動の現象理解が必要となるものの，

非線形音場と浮遊試料の相互作用による動的挙動

や液滴内外部に発生する音響流，またそれらの複

合現象に起因する複雑さゆえ，析出を伴う液滴の

蒸発における実験的知見が乏しいのが現状である． 

 本研究では音場浮遊液滴の蒸発および析出挙動

の現象を理解し，高精度な非接触制御を行うこと

を目的している．本報では析出を伴う液滴の蒸発

挙動の実験的評価と既存の理論を拡張し比較した

結果を報告する．  

２．実験装置および実験条件 

 Fig.1 に本研究で用いた実験装置の全体概要図お

よび浮遊液滴の動的挙動の可視化観測体系を示す．

まず関数発信機にて発信された正弦波信号をアン

プで増幅し，パワーメータを介して超音波振動子

に入力する．超音波振動子に接続された下部ホー

ンから超音波を発信し，リフレクターに反射させ

ることによりホーン-リフレクタ間に音響定在波

が形成される．また液滴はシリンジにて注入し定

在波の節付近に浮遊する．浮遊させた液滴はハイ

スピードカメラで撮影し，同時に放射温度計を用

いて液滴の界面温度の計測も行った．関数発信機

によって発信する正弦波は 19.3 kHz とし,室温およ

び相対湿度は 25℃，50%とした．試験流体は溶質

濃度 20wt%の NaCl 水溶液を使用した．  

 

Fig. 1 Schematic of experimental setup. 

３．実験結果および考察 

Fig. 2にNaCl水溶液の蒸発過程を示す．図中の画

像が各時刻における可視化画像である．また図中

の横軸が時間，縦軸は各時刻における液滴等価直

径を初期液滴等価直径で除し二乗した無次元面積

を示す．図中のプロットが実験値であり，液滴の初

期体積等価直径d0は1.6 mmとした．可視化画像か

ら液滴は時間経過とともにNaClの析出が確認でき，

約1860 s 以後液相が確認できなくなった．また実

験結果の蒸発過程は約1860 sまで無次元表面積が

減少し，それ以後一定となる2段階の蒸発過程を示

した．これらの原因は，時間経過とともに液滴の水



成分が蒸発し，約1860 sでNaClが完全に析出したた

めだと考えられる．また実験結果と理論との比較

を行った．単成分液滴の蒸発を表す式として，式

(1)のd2-lawが示されている[4]．NaCl水溶液は水成分

のみが蒸発するため，式(1)を用いて算出した． 
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 ここで，D は拡散係数，M は分子量，ρ は密度，

R は気体定数，P は蒸気圧，T は温度，t は時間，

d0 は初期等価直径，添え字の s は液滴界面，∞は周

囲気体を示している．液滴の界面温度 Ts は放射温

度計による実測値を代入した．Fig. 2 の実線が式(1)

より導いた理論値である．実験値と理論値を比較

すると大きく乖離している．これは不揮発性物質

の溶解による蒸気圧降下の影響が考えられる．

NaCl水溶液は蒸気圧降下により純粋な水よりも蒸

発速度が遅くなるため乖離したと考えられる．  

式(1)の応用として蒸気圧降下を考慮する理論式

の式(2)が示されている[5]．そこで実験結果と式(2)

とを比較した． 
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ここで xu は溶質モル分率，i は Van’t Hoff factor

を示す．i は 2[5]とした．また式(2)中の xu は溶質の

モル分率であり，使用するためには各時刻のモル

分率を推定する必要がある． 

Fig.3 に各時刻の濃度の推定結果を示す．図中横

軸が時間，縦軸が質量濃度を示す．濃度の推定方法

は実験結果から 1860 s で水成分が完全に蒸発した

と仮定し，質量分率の式から算出した．その結果,

約 560 s で飽和水溶液になることが推定された． 

推定結果を用いて各時刻の xu を計算し，式(2)に

代入し理論を算出した．Fig.4 に実験値と蒸気圧降

下を考慮した理論との比較を示す．図中の破線が

新たに算出した理論である．実験値と理論値を比

較すると約 1300 s まで一致を示した． 

 
Fig. 2  Evaporation process of NaCl solution 

droplet. 

 

Fig. 3  Estimation of mass concentration. 

 

Fig. 4  Comparison of theory and experiment 

considering vapor pressure depression. 
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