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 本研究の目的は交通標識画像を対象に、交通標識を自動的に識別する方法を考案すると共に、その識別方法の信頼性

を実験的に求めることである。特徴抽出にAlex-Net、分類器にSVM(Support Vector Machine)を組合わせて用いる。全

体の成功率が34.2%、全体のエラー率が65.7%となった。クラスによって実験サンプルの枚数が不足していて、クラス

ごとの精度にばらつきがある。サンプル数は少なく精度は低い。サンプル画像を増強し、精度向上のための方式改良や

確認実験をする必要がある。 
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１．はじめに 

 近年、様々な機関が自動運転の技術に挑戦して

いるが、車線の認識、人物の認識、交通標識の認

識、緊急時の対応等の課題が多数ある[1]。その中

で交通標識の認識について着目する[2]。 

 本研究の目的は交通標識画像を対象に、交通標

識の種類を自動的に識別する方法を考案すると共

に、その識別方法の信頼性を実験的に求めること

である。交通標識画像に対し深層ニューラルネッ

トワークと SVM を用い識別する。 

 

２．交通標識識別の原理 

 図１に交通標識識別の流れを示す。サンプルの

交通標識に対して４３クラスの識別を行う。特徴

抽出に Alex-Net[3]、分類器に SVM を組合わせて

用いる。識別結果は交通標識の種類が出力される。

深層ニューラルネットワーク Alex-Net は、あらか

じめ物体画像により学習済みのものを用いる。SVM

は交通標識画像を用いて学習させる。 

 

 

図１ 交通標識識別の原理 

３．交通標識識別の実験 

〈3・1〉サンプル画像  

図２に各交通標識サンプル画像の例を示す。表

１に実験で使用する The German Traffic Sign 

Detection Benchmark を示す[4]。表２に各交通標

識サンプルのクラス別枚数を示す。 
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図２ クラスのサンプル画像の一例 
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